Односторо́нний преде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва) и правосторо́нним преде́лом (преде́лом спра́ва).
Число называется правосторонним пределом (правым пределом, пределом справа) функции в точке , если для всякой последовательности, состоящей из точек, больших числа , которая сама сходится к числу , соответствующая последовательность значений функции сходится к числу .
Число называется левосторонним пределом (левым пределом, пределом слева) функции в точке , если для всякой последовательности , состоящей из точек, меньших числа , которая сама сходится к числу , соответствующая последовательность значений функции сходится к числу .[1]
Число называется правосторонним пределом (правым пределом, пределом справа) функции в точке , если для всякого положительного числа отыщется отвечающее ему положительное число такое, что для всех точек из интервала справедливо неравенство.
Число называется левосторонним пределом (левым пределом, пределом слева) функции в точке , если для всякого положительного числа отыщется отвечающее ему положительное число , такое, что для всех точек из интервала справедливо неравенство .[1]
Односторонний предел как предел вдоль фильтра
Односторонний предел является частным случаем общего понятия предела функции вдоль фильтра. Пусть и Тогда системы множеств
и
являются фильтрами. Пределы вдоль этих фильтров совпадают с соответствующими односторонними пределами:
Обозначения
Правосторонний предел принято обозначать любым из нижеследующих способов:
Аналогичным образом для левосторонних пределов приняты обозначения:
При этом используются также сокращённые обозначения:
и для правого предела;
и для левого предела.
При для сокращения записи вместо и обычно пишут и соответственно.
Свойства
Основные свойства односторонних пределов идентичны свойствам обычных пределов и являются частными случаями свойств пределов вдоль фильтра.
Для существования (двустороннего) предела функции необходимо и достаточно, чтобы оба односторонних предела существовали и равнялись между собой.[1]