Золотое сечение
Иррациональные числа Шаблон:Вещественные константы | |
Система счисления | Оценка числа Φ |
Десятичная | 1.6180339887498948482… |
Двоичная | 1.1001111000110111011… |
Шестнадцатеричная | 1.9E3779B97F4A7C15F39… |
Шестидесятеричная | 1; 37 04 55 20 29 39 … |
Рациональные приближения | 3/2; 5/3; 8/5; 13/8; 21/13; 34/21; 55/34; 89/55; …
, где — числа Фибоначчи (перечислено в порядке увеличения точности) |
Непрерывная дробь |
Шаблон:Врезка Шаблон:Значения Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин и , при котором большая величина относится к меньшей так же как сумма величин к большей, то есть: Исторически изначально в древнегреческой математике золотым сечением именовалось деление отрезка точкой на две части так, что большая часть относится к меньшей, как весь отрезок к большей: . Позже это понятие было распространено на произвольные величины.
Число, равное отношению , обычно обозначается прописной греческой буквой , в честь древнегреческого скульптора и архитектора Фидия[1], реже — греческой буквой . Из исходного равенства (например, представляя a или даже a/b независимой переменной и решая выводимое из исходного равенства квадратное уравнение) нетрудно получить, что число
Обратное число, обозначаемое строчной буквой [1],
Отсюда следует, что
- .
Число называется также золотым числом.
Для практических целей ограничиваются приблизительным значением = 1,618 или = 1,62. В процентном округлённом значении золотое сечение — это деление какой-либо величины в отношении 62 % и 38 %.

Золотое сечение имеет множество замечательных свойств, но, кроме того, ему приписывают и многие вымышленные свойства[2][3][4].
История
В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (Шаблон:Lang-el2) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника.
Лука Пачоли, современник и друг Леонардо да Винчи, усматривал в этом отношении «божественную суть», выражающую триединство Бога Отца, Сына и Святого Духа[5].
Неизвестно точно, кто и когда именно впервые ввел в обращение термин «золотое сечение». Несмотря на то, что некоторые авторитетные авторы связывают появление этого термина с Леонардо да Винчи в XV веке[6] или относят появление этого термина к XVI веку[7], самое раннее употребление этого термина находится у Мартина Ома в 1835 году в примечании ко второму изданию его книги «Чистая элементарная математика»[8], в котором Ом пишет, что это сечение часто называют золотым сечением (Шаблон:Lang-de). Из текста примечания Ома следует, что Ом не придумал этот термин самШаблон:Sfn—, хотя некоторые авторы утверждают обратное[9]. Тем не менее, исходя из того, что Ом не употребляет этот термин в первом издании своей книги[10], Роджер Герц-Фишлер делает вывод о том, что этот термин, возможно, появился в первой четверти XIX века.Шаблон:Sfn Марио Ливио считает, что он получил популярность в устной традиции около 1830 года.Шаблон:Sfn В любом случае, этот термин стал распространён в немецкой математической литературе после Ома.Шаблон:Sfn
Математические свойства
- — иррациональное алгебраическое число, положительное решение квадратного уравнения , откуда, в частности, следуют соотношения:
- Для чисел и верны следующие равенства:
- — представляется еще через тригонометрические функции:
- При делении пополам угла между диагональю и меньшей стороной прямоугольника с отношением сторон 1:2 по формуле тангенса половинного угла получаем соотношение
- представляется в виде бесконечной цепочки квадратных корней:
- представляется в виде бесконечной цепной дроби
- подходящими дробями которой служат отношения последовательных чисел Фибоначчи . Таким образом,
- Мера иррациональности равна 2.

- Отрезав квадрат от прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон , что и у исходного прямоугольника .

- В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении. На приведённом рисунке отношения красного отрезка к зелёному, зелёного к синему и синего к пурпурному равны . Кроме того, отношение красного отрезка к расстоянию между соседними вершинами звезды, которое равно зелёному отрезку, также равно .

- Геометрическое построение. Золотое сечение отрезка можно построить следующим образом: в точке восстанавливают перпендикуляр к , откладывают на нём отрезок , равный половине , на отрезке откладывают отрезок , равный , и наконец, на отрезке откладывают отрезок , равный . Тогда
- Другой способ построить отрезок, равный по длине числу золотого сечения, — начертить сначала квадрат ABCD со стороной 1. После этого одну из сторон, например сторону AD, разделить точкой E пополам, так что AE=DE=1/2. От точки B или C до точки E провести гипотенузу треугольника АВЕ или DCE. Согласно теореме Пифагора ВE=СE=. Затем провести дугу с центром в точке Е от точки В или точки С до момента её пересечения с продолжением стороны АD (точкой пересечения дуги и продолжения стороны АD пусть будет точка Н). Как радиусы круга BE=СЕ=ЕН. Так как АН=АЕ+ЕН, результатом будет отрезок АН длиной . Так как DH=EH-ED, другим результатом будет отрезок DH длиной [11].
- Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.
- Значения дроби после запятой для , и в любой системе счисления будут равны[12].
Тогда как Шаблон:Нет АИ
Золотое сечение в науке

Золотое число возникает в разных задачах, в том числе в физике. Например, бесконечная электрическая цепь, приведенная на рисунке, имеет общее сопротивление (между двумя левыми концами) Ф·r.

Существуют колебательные системы, физические характеристики которых (отношения частот, амплитуд и др.) пропорциональны золотому сечению. Самый простой пример — система из двух шариков, соединенных последовательно пружинами одинаковой жесткости (см. рисунок).
Полностью эти две задачи рассматриваются в книге «В поисках пятого порядка», глава «Две простые задачки»[13]. Более сложные примеры на механические колебания и их обобщения рассматриваются в этой же книге, в главе «Обобщения одной простой задачи по механике». В книге приведено много примеров проявления и применения золотого сечения в различных областях наук — небесной механике, физике, геофизике, биофизике, физической химии, биологии, физиологии.
Золотое сечение сильно связано с симметрией пятого порядка, наиболее известными трехмерными представителями которой являются додекаэдр и икосаэдр. Можно сказать, что всюду, где в структуре проявляются додекаэдр, икосаэдр или их производные, там в описании будет появляться и золотое сечение. Например, в пространственных группировках из Бора: В-12, В-50, В-78, В-84, В-90, …, В-1708, имеющих икосаэдрическую симметрию[14]. Молекула воды, у которой угол расхождения связей Н-О равен 104.70 , то есть близок к 108 градусам (угол в правильном пятиугольнике), может соединяться в плоские и трехмерные структуры с симметрией пятого порядка. Так в разреженной плазме был обнаружен Н+(Н20)21, который представляет из себя ион Н30+, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[15]. В 80-х годах XX века были получены клатратные соединения, содержащие гексааквакомплекс кальция, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[16]. Есть и клатратные модели воды, в которых обыкновенная вода отчасти состоит из молекул воды, соединенных в структуры с симметрией пятого порядка. Такие структуры могут состоять из 20, 57, 912 молекул воды[17].
Золотое сечение и гармония в искусстве

Некоторые из утверждений в доказательство гипотезы знания древними правила золотого сечения:
- Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.
- Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0 и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино- и телевизионных экранов — например, 4:3 или 16:9) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми»Шаблон:Нет АИ.
- Следует отметить, что сама пропорция является, скорее, эталонным значением, матрицей, отклонения от которой у биологических видов, возможно, вызваны приспособлением к окружающей среде в процессе жизни. Примером таких «отклонений» может служить морская камбала.

Примеры сознательного использования
Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения». Российский зодчий И. В. Жолтовский использовал золотое сечение в своих проектах[18]. Иоганн Себастьян Бах в своей трёхголосной инвенции E-dur № 6 BWV 792 использовал двухчастную форму, в которой соотношение размеров частей соответствует пропорциям золотого сечения. 1 часть — 17 тактов, 2 часть — 24 такта (небольшие несоответствия выравниваются за счёт ферматы в 34 такте)Шаблон:Нет АИ.
Современными примерами применения золотого сечения может служить мозаика Пенроуза и пропорции государственного флага Того. Шаблон:Clear
Золотое сечение в биологии и медицине

Живые системы также обладают свойствами, характерными для «золотого сечения». Например: пропорции тел, спиральные структуры или параметры биоритмов[19]Шаблон:Проверить авторитетность и др.
См. также
- Золотая спираль
- Пифагорейский пентакл
- Фибоначчиева система счисления
- Правило третей
- Метод золотого сечения
- Сверхзолотое сечение
- Золотой угол
- Числа Фибоначчи
Примечания
Литература
- Аракелян Г. Б. Математика и история золотого сечения. — М.: Логос, 2014, 404 с. — ISBN 978-5-98704-663-0.
- Бендукидзе А. Д. Золотое сечение «Квант» № 8, 1973
- Васютинский Н. А. Золотая пропорция. — М.: Молодая гвардия, 1990. — 238[2]c. — (Эврика).
- Власов В. Г. Золотое сечение, или Божественная пропорция // Власов В. Г. Новый энциклопедический словарь изобразительного искусства: В 10 т. — Т.3. — СПб.: Азбука-Классика, 2005. — С.725-732.
- Власов В. Г. Приемы гармонизации пространства в классической архитектуре // Власов В. Г. Искусство России в пространстве Евразии. — Т.3. Классическое искусствознание и «русский мир». — СПб.: Дмитрий Буланин, 2012. — С.156-192.
- Мазель, Л.А. Опыт исследования золотого сечения в музыкальных построениях в свете общего анализа форм // Музыкальное образование. – 1930. – № 2. – С. 24-33.
- Сабанеев Л. Л. Этюды Шопена в освещении закона золотого сечения. Опыт позитивного обоснования законов формы // Искусство. — 1925. — № 2. — С. 132—145; 1927. — № 2-3. — С. 32-56.
- Шмигевский Н. В. Формула совершенства // Страна знаний. — 2010. — № 4. — С.2-7.
- Шаблон:Книга Русский перевод в
Ссылки
- В. С. Белнин, «Владел ли Платон кодом золотой пропорции? Анализ мифа»
- А. В. Радзюкевич, К вопросу о научном изучении пропорций в архитектуре и искусстве.
- А. В. Радзюкевич, Критический анализ Адольфа Цейзинга — основоположника гипотезы «золотого сечения».
- Шевелев И. Ш., Марутаев М. А., Шмелев И. П. Золотое сечение: Три взгляда на природу гармонии. - М.: Стройиздат, 1990. - 343 с., ил.
- Статья о золотом сечении в изобразительном искусстве, Золотое сечение в изобразительном искусстве
- Шаблон:Cite web
- Функция Фибоначчи в Wolfram alpha
Шаблон:Числа с собственными именами Шаблон:Иррациональные числа Шаблон:Золотое сечение
- ↑ 1,0 1,1 Шаблон:Статья
- ↑ Радзюкевич А. В. Красивая сказка о «золотом сечении»
- ↑ Mario Livio, The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number
- ↑ Devlin’s Angle, The Myth That Will Not Go Away
- ↑ В. Лаврус, Золотое сечение
- ↑ Шаблон:Книга
- ↑ Шаблон:Cite book
- ↑ Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Шаблон:Книга
- ↑ Шаблон:Книга
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Шаблон:Книга
- ↑ Шаблон:Книга
- ↑ Золотой запас зодчества Шаблон:Wayback
- ↑ Цветков, В. Д. Сердце, золотое сечение и симметрия. — Пущино: ПНЦ РАН, 1997. — 170 с.