Файл:How to make mathematical roller curve based on triangle.svg

Материал из testwiki
Перейти к навигации Перейти к поиску

Исходный файл(SVG-файл, номинально 680 × 680 пкс, размер файла: 56 Кб)

Этот файл из на Викискладе и может использоваться в других проектах. Информация с его страницы описания приведена ниже.

Описание

Diagram showing how to construct a mathematical "roller" (i.e. constant-width curve) based on any triangle. In the diagram, A, B, C are the vertices of the triangle, while a, b, c are the lengths of the opposing sides. If x is defined as the sum of the lengths of the two longest sides of the triangle while y is an arbitrarily-chosen non-negative "padding factor", then the constant-width roller curve will be constructed from the following six circular arcs:

  • Radius x+y-a centered at A
  • Radius x+y-b-c centered at A
  • Radius x+y-b centered at B
  • Radius x+y-a-c centered at B
  • Radius x+y-c centered at C
  • Radius x+y-a-b centered at C

The arcs with two negative terms in the definition of the radius are on the same side of the triangle as the vertices at their centers, while the arcs with one negative term in the definition of the radius are on the opposite side of the triangle.

The overall diameter of constant width of the curve is calculated as the sum of the lengths of the two longest sides of the triangle (x) plus twice the padding factor (2y) minus the length of the shortest side of the triangle. The perimeter is pi times the diameter (as for a circle).

If the padding factor y is set at zero, then at least one of the arcs will be of zero radius, which means that there will be a point of tangent discontinuity where curves join at a vertex of the triangle. In the case of an isoceles triangle where the equal angles are less than 60°, y=0 means that there will two points of tangent discontinuity, while in the case of an equilateral triangle there will be three points of tangent discontinuity (i.e. a Reuleaux triangle).

In the diagram, there is a Pythagorean triangle with sides of relative length 3, 4, 5 (so x=9) while the padding factor is 1 unit (i.e. y=1). This means that there will be circular arcs of radius 5 and 3 centered on the right angle vertex (B in the diagram), circular arcs of radius 7 and 1 centered on the vertex opposite the shortest side of the triangle (C in the diagram), and circular arcs of radius 6 and 2 centered on the other vertex (A). The overall constant diameter is 8 units, and the perimeter (sum of the length of the six arcs) is 8π. This can be seen from the following calculation, proceeding counterclockwise from the top (where 36.869898°=atan(3/4), and angle is converted to arc length by multiplying it times radius, times the radian conversion factor π/180):

 Degrees:   Radius:   Arc Length:
  -----      ---      -----------
   90         5       2.5pi
36.869898     1       0.20483276pi
53.130102     6       1.77100341pi
   90         3       1.5pi
36.869898     7       1.43382935pi
53.130102     2       0.59033447pi
                        -------
Total perimeter:      8pi
To see a diagram of a constant-width curve based on a 3,4,5 Pythagorean triangle with padding factor y=0 (and so with five circular arcs and one tangent discontinuity point), see image File:Curve of constant width.svg .
Дата
Источник

This diagram is based on information in the book Mathematical Models by H. Martyn Cundy and A.P. Rollett, second edition, 1961 (Oxford University Press), p. 211, combined with an adapted version of some of the layout details from PD diagram File:Curve of constant width.svg...

Generated from the following vector PostScript source code:

%!
300 396 translate/x 36.869897646 def
2 setlinewidth 150 0 moveto
-250 0 lineto stroke
0 -150 moveto 0 250 lineto stroke
-240 -30 moveto 80 210 lineto stroke
0 .875 1 setrgbcolor
0 0 1.5 0 360 arc closepath fill
0 .925 0 setrgbcolor
-200 0 1.5 0 360 arc closepath fill
1 .4 .4 setrgbcolor
0 150 1.5 0 360 arc closepath fill
3 setlinewidth .0 .0 8 setrgbcolor
0 0 250 90 180 arc stroke
0 0 150 270 360 arc stroke
0 .75 0 setrgbcolor
-200 0 50 180 dup x add arc stroke
-200 0 350 0 x arc stroke
.95 0 0 setrgbcolor
0 150 300 180 x add 270 arc stroke
0 150 100 x 90 arc stroke
/Helvetica-bold 24 selectfont
6 129 moveto(A)show
.0 .0 8 setrgbcolor 6 -26 moveto(B)show
0 .75 0 setrgbcolor -187 -22 moveto(C)show
0 setgray/Times-bold 18 selectfont
-96 6 moveto(a)show
45 6 moveto(x+y-a-c)show
gsave 90 rotate -105 8 moveto(x+y-a-c)show
63 8 moveto(c)show
172 8 moveto(x+y-b-c)show grestore
gsave x rotate  -38 127 moveto(b)show
114 127 moveto(x+y-b-c)show
/Times-bold[15 0 0 18 0 0]selectfont
-205.5 104 moveto(x+y-a-b)show grestore
/Times-roman 15 selectfont
-248 237 moveto(x = the sum of the)show
-248 221.25 moveto(two longest sides)show
-248 204.5 moveto(of the triangle)show
/Times-bold[15 0 0 18 0 0]selectfont
-245.5 6 moveto(x+y-a-b)show
.5 setgray 1 setlinewidth
-252 252 moveto 404 0 rlineto
0 -404 rlineto -404 0 rlineto
closepath stroke showpage
%EOF
Автор AnonMoos
Права
(Повторное использование этого файла)
Public domain Я, владелец авторских прав на это произведение, передаю его в общественное достояние. Это разрешение действует по всему миру.
В некоторых странах это не может быть возможно юридически, в таком случае:
Я даю право кому угодно использовать данное произведение в любых целях без каких-либо условий, за исключением таких условий, которые требуются по закону.
Другие версии

Краткие подписи

Добавьте однострочное описание того, что собой представляет этот файл

Элементы, изображённые на этом файле

изображённый объект

История файла

Нажмите на дату/время, чтобы увидеть версию файла от того времени.

Дата/времяМиниатюраРазмерыУчастникПримечание
текущий05:08, 13 декабря 2010Миниатюра для версии от 05:08, 13 декабря 2010680 × 680 (56 Кб)wikimediacommons>AnonMoosDiagram showing how to construct a mathematical "roller" (i.e. constant-width curve) based on any triangle. In the diagram, '''A''', '''B''', '''C''' are the vertices of the triangle, while '''a''', '''b''', '''c''' are the lengths of the opposing sides.

Следующая страница использует этот файл: